
Volume 200, number 3 PHYSICS LETTERS B 14 January 1988 

N O  L I G H T  D I L A T O N  IN G A U G E  T H E O R I E S  

Bob H O L D O M  and John T E R N I N G  
Department of Phystcs, Untversuy of Toronto, Toronto, Ontarto, Canada M5S IA 7 

Received 22 October 1987 

We study the dynamical breakdown of approximate scale mvarxance in gauge theories with slowly varying couplings and with- 
out ultraviolet cutoff We isolate the htgh energy contribution to the dllaton mass and obtain an expression for it in terms of the 
fermlon self-energy _r(k) ,S(k) is determined via an analytical treatment of the hneanzed, ladder Schwmger-Dyson equation 
We find that th~s contribution to the ddaton mass is large and is surprisingly lnsensmve to the ,B-function when the fl-function is 
small, The result is that for a technicolor theory with a slowly varying couphng there is no light dilaton At most there is a massive 
scalar, the analog of the standard Hxggs scalar, with a mass tied to the technifermlon mass scale 

There has been recent interest  in chxral symmet ry  
breaking occurr ing in theories having slowly varying 
gauge couplings. Old problems in technicolor  theo- 
ries concerning f lavor changing neutral  currents  and  
low mass techmpions  may  be al leviated [ 1-4]  and  
addi t ional  predict ions may result as well [ 5 ], A small 
f l-function also gives some handle  on the s tudy of  
chiral  symmet ry  breaking beyond  the ladder  ap- 
p rox imat ion  [ 6 ]. 

A small  fl-functaon and chiral  symmet ry  breaking 
seem to imply  a spontaneous  b reakdown of  approx-  
imate  scale symmetry.  This  led to speculat ion about  
a hght di la ton in technicolor  theories [ 3 ]. This  par- 
t~cle is the analog of  the s tandard  neutral  Htggs: it 
has the same quan tum numbers  and it couples sim- 
i larly to quarks and leptons. But unl ike the Hxggs we 
may hope to de te rmine  the d i la ton mass. The first 
guess is that  the d i la ton mass squared is p ropor t iona l  
to the fl-function, and could thus be small  [ 3 ]. An- 
other  in terpre ta t ion  is that  the d i la ton mass is o f  or- 
der  the conf inement  scale, which could also be small  

[71. 
In  ref. [8] we s tudied the cont r ibu t ion  to the di- 

laton mass arising from energy scales large compared  
to the chiral  symmet ry  breaking scale. In par t icular  
we isolated the cont r ibu t ion  to the mass due to a 
physical  ul t raviolet  cutoff, corresponding to new 
"'sideways" physics in a technicolor theory. We found 
that  this cont r ibut ion  in fact grew the slower the cou- 

phng a (k) fell for increasing k. When combined  with 
the cont r ibu t ion  arising from the var ia t ion  o f  a ( k )  
we found that  the total  high energy cont r ibut ion  to 
the mass was always large. A light d i la ton was un- 
hkely. (Ref. [9] cont inued the study o f  the dl la ton 
mass for the case of  a constant  coupling, with a sim- 
ilar conclusion, although the physical  in terpre ta t ion  
o f  the ul t raviolet  cutoff  in that  reference differs f rom 
ours.)  But we found that  the mass d id  decrease 
somewhat  with mcreaslng cutoff, and the possibi l i ty  
r emained  that  a smaller  mass could result i f  the si- 
deways physics was represented by something less 
severe than a cutoff. 

In this paper  we ask how the dxlaton mass behaves  
in a barely asymptot ical ly  free theory with no phys- 
ical ul t raviolet  cutoff. We again focus on the high en- 
ergy con t r ibuhon  to the d l la ton mass. The slow 
var ia t ion  of  the coupling a ( k )  is the only source of  
explici t  breaking of  scale invar lance and one would 
guess that  the slower a ( k )  decreased for increasing 
k, the smaller  this contr lbut ton to the di la ton mass 
would become.  But this is not  what  we find. 

For  the d i la ton mass squared we der ive an integral 
expression involving the fermion self-energy Z(k) .  
The dependence on the fl-functlon is such that  l f Z ( k )  
were held fixed the mass squared would vanish hn- 
eafly with fl as naively expected. But previous  work 
[6,5] has shown that  as fl decreases the funct ion 
k2~(k) peaks at ever increasing m o m e n t u m  scales. 
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The integrand in the mass formula behaves similarly 
and the net result is a dilaton mass with surprisingly 
little dependence on ft. We obtain a simple expres- 
sion for small fl which shows that the mass is of or- 
der of the dynamical fermion mass. This contribution 
may well dominate any further contribution to the 
dilaton mass arising from confinement physics. 

This latter fact is well illustrated m a theory which 
generates a fermlon mass much higher than the con- 
finement scale due to a large Casimir 6"2 for the fer- 
mion representation. We find that the dilaton mass 
remains tied to the dynamical fermion mass scale. It 
is also of interest that one may justify an arbitrarily 
small fl-function to all orders in a in the limit of large 
C2 and small number of flavors [ 6 ]. The fl-function 
is then small since chlral symmetry breaking is oc- 
curring at small o~. It is in this type of limit that the 
results of this paper are particularly striking. 

We will work within the standard ladder approx- 
imation. But our basic result concerning the high en- 
ergy contribution to the dllaton mass is not, we 
believe, just a special consequence of this approxi- 
mation. One of us has argued [6] that the general 
form of kS(k) for small fl expected beyond the lad- 
der approximation is similar to that obtained in the 
ladder approximation. It is the tendency for the peak 
of the function kS(k) to occur at ever increasing mo- 
mentum scales as fl decreases which is responsible 
for the basic result. 

The ddaton mass is obtained by noting the be- 
havior of the effective action under scale transfor- 
mations. Our result appears somewhat surprising to 
the extent that the scale breaking in the effective ac- 
tion apparently vanishes as fl vanishes. But the ef- 
fective action is a functional of .S(k) and when 
minimized the preferred point in function space does 
turn out to be characterized by large scale breaking, 
for arbitrarily small but nonzero ft. That is, upon 
minimization, the integrals in the effective action al- 
ways receive support over such a large range of mo- 
mentum that it is never a good approximation to set 
the coupling c~(k) equal to a constant. 

And on the other hand if the coupling actually was 
constant (fl = 0) then there is no local minimum of 
the effective action, unless an ultraviolet cutoff is 
imposed [ 10]. But then it is the ultraviolet cutoff 
which breaks scale invanance and which ensures a 
large dilaton mass [8,9]. 

We shall obtain our results via an analytical treat- 
ment of the linearized ladder Schwinger-Dyson (SD) 
ladder, making use of the observation in ref. [ 11 ] 
that the solution X(k) is related to a Whittaker func- 
tion. And we shall derive the appropriate infrared 
boundary condition directly from the linearization 
procedure (our boundary condition is different to 
that used in ref. [ 11 ]). Ref. [ 5 ] shows that the X(k) 
so obtained agrees quite well with a numerical anal- 
ysis of the nonlinear equation. 

We begin by considering the effective action for a 
theory with n flavors of massless fermlons coupled 
to a non-abelian gauge field. The fermlons are m a 
representation r of the gauge group SU(N) with di- 
mension d(r) and quadratic Casimir C2(r). In Lan- 
dau gauge and in euchdean space we consider the 
effective action F to two-loop order and include as 
well higher order diagrams responsible for the run- 
ning coupling c~(k) [ 12,4]. 

F -  nd(r) i 8~z2 dp p 3 
0 

1- 4X2(p) 

7 3nd(r)C2(r) ~ p2X(p) I ~" k2X(k) 
8x 3 a p p z - - ~ p )  j oK k2 +X2(k) 

0 0 

X min{k/p, p/k} o~ (max{p, k}). (1) 

We follow the derivation of the dllaton mass in ref. 
[ 8 ] except that now we do not use an ultraviolet cut- 
off. The method consists of examining the behavior 
of F(p) obtained by making a scale transformation 
of the order parameter X(p)--+eP£(e-"p). If the di- 
laton is considered to be the pseudo-Goldstone bo- 
son of spontaneously broken scale invarlance, then 

m,,f,,, where mo is the dilaton dZF(p)ldpZlp=o = 2 2 
mass, and f ,  is the dllaton decay constant. This is 
analogous to finding the pion mass by noting how 
the vacuum energy changes when (~7!u) undergoes 
a chlral transformation. 

The nonmvxal p dependence arises from the sec- 
ond term in (1) and thus F(p) takes the form 

F(p) =eap[c-f(p)], (2) 
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where c is independent ofp  and f (p )  may be written 
as  

i kZ(k)a(ePk ) 3nd(r)C2(r) dk k2 
f(p) = 47t3 +2~2(k) 

0 
L 
f "  p32~(p) × ap p ~  -(p ) . (3) 
d 
0 

Using the fact that dF(p)/dp]p=o=O we find 

rn~f2o =d2 r(p)/dP 2 Ip=O 

= - 4f '  (0) - f " ( 0 ) .  (4) 

It is clear that lf27(k) is held fixed then the slower 
a (k )  varies with momentum, the smaller mo be- 
comes. But of course 27(k) does depend on how a(k) 
evolves and it is this dependence to which we now 
turn. The equation of motion AF/fX= 0 is just the 
ladder SD equation with the running coupling 
inserted: 

a 

X(a)= 2__~) dbb+z2(b~ ) + db ( ) ,  (5) 
0 a 

with 

2(a)=a(a)/4a¢, ac=zr/3C2(r), (6) 

and where a and b denote momenta squared. 
For an asymptotically flee theory the solution Z(a) 

to (5) turns out to be a monotonically decreasing 
function of a. With this in mind we find it useful to 
define the scale ~c satisfying Z(x 2) = K. For b< ;¢2 in 
(5) the denominators are dominated by Z(b) and 
this damps the integrals in the infrared. To study (5) 
analytically we will lineafize it by replacing b + 272(b) 
by b in the denominators and by introducing an in- 
flared cutoff at ~¢2. 

We are justified in making this approximation in 
the case of a slowly varying couphng. In this case the 
obtained solution implies that the action F receives 
most of its contribution from momentum scales much 
larger than K. This indicates that the solunon Z(a) 
for a>t¢ 2 is relatively insensitive to the manner in 
which the integrals in (5) are damped in the m- 
flared. And we will find that most of the contribu- 
uon to the dilaton mass integral also comes from large 
momenta. 

We shall therefore replace (5) by the following. 

Z(a)=2(a) idbZ(b)+idb i ' (b )~(b) 'a  (7) 
K 2 a 

Z(x 2) =~c. (8) 

Note that these equations must determine x as well 
as Z(a) .  The integral equation may now be con- 
vetted into a differential equation 

(2/a)" 
Z"(a) - -  Z'(a)-(2/a)'Z,(a)=O, (9) 

(2/a) '  

with 

S(x2) =x, 2;'(x2) =0. (10) 

Note the new boundary condition. We shall also be 
requiring that the solution has the appropriate 
asymptotic behavior. 

For asymptotically free theories we are motivated 
to parameterize 2 by 

).(x)=A/2x, x=ln(a/A2). (11) 

This corresponds to kOka(k)=-ba2(k) with 
A = 1/ba¢. (This lowest order result may actually be 
justified to all orders m a, for the a relevant for the 
chlral symmetry breaking, in the limit C2(r) >> N and 
C2 (r) n << N3/d(r ) [ 6 ].) If we change variables in (9), 
use (1 1 ), and define [ 1 1 ] 

G(x) = (X/Xo)~/2 exp[(x-xo)/2]Y_,(x)/x, 

with Xo=-ln(~c2/A2), we obtain 

G'(x) ( @  A-1  A - l ' ]  
G"(x) + x(x+ 1-----) + + ~ + 2x 2 ,1 

× G ( x ) = 0 ,  (12) 

G(xo)=l, G'(xo)=½(l+l/xo). (13) 

Of interest are theories with slowly varying cou- 
pling constants, i.e. theories where A is large. But we 
will find that chiral symmetry breaking occurs when 
the couphng is close to the critical coupling, 
2A/xo=a(Xo)/ac~-1. Thus since we need only con- 
sider x>~xo>~A we may neglect certain terms in (12) 
and consider instead 

G"(x)+ + ~ G(x)=0 .  (14) 

Eq. (14) was obtained in ref. [11] where it was 

340 



Volume 200, number 3 PHYSICS LETTERS B 14 January 1988 

noted that it is a special case of  Whit taker 's  equation 
[13]:  

w"(x)+ (@ +-~+x (¼-J--2) W(x)=0.x= (15) 
The general solution to this equation may be ex- 
pressed as a linear combinat ion of  the Whittaker 
function W),4,(x) and the linearly independent func- 
tion W y , ( - x ) .  Since we are interested in large x 
we may neglect the 1/x 2 terms as before, as long as 
/t 2 -  ¼ is not too large. This g~ves us some freedom in 
choosing/t .  In any case it ~s fortunate that we may 
neglect the 1/x 2 term in eq. (12), since its large and 
posmve  coefficient cannot be reproduced by Whit- 
taker's equation. 

It is well known that the asymptotic form of  the 
spontaneous chlral symmetry breaking solution to 
the SD equation in an asymptotically free theory is 
~(x ) - -*e - ' - x  "4/2-1 a s  x- ,oo  [14].  This is just what 
follows from G(x)=W(A_t)12.,(x). On the other 
hand G(x) = W_(A_ t ~/2.~(--X) yields the asymptotic 
behavior  o f  the exphcit chlral symmetry breaking so- 
lution [ 14]: Z ( x ) - , x - ' V 2  as x--,oo. The existence o f  
an ultraviolet cutoff  will m general require a linear 
combinat ion of  these two solutions. But in our case 
o f  no ultraviolet cutoff  only the first solution gives 
the correct asymptotic behavior. 

We now have the function form of  the self-energy 

--Y'(X) oCX-t/2e-,/2 W~ 4-, )/2 ,(X). (16) 

We may relate th~s to the degenerate hypergeometnc  
funcnon via the identity 

Wv,l~(x)=e-~/2xlZ+'/2U(,u-y+½, 1 +2/1, x) (17) 

and obtain 

X ( x ) o c e - ' x ' U ( - A / 2 + l + l . t ,  1 +2/t, x).  (18) 

Xo ~s determined from the boundary  condit ion in 
(10), X ' ( x o ) = 0 .  For x>xo we require that X(x)  
monotomcally decrease towards zero (solutions w~th 
nodes will g~ve a larger action).  Thus Xo is the largest 
x at which the functmn on the RHS of  (18) has a 
local maximum. We first wish to show as clmmed 
above that xo>A for large A. We may do this by not- 
lng that U ( - n ,  m +  I, x) with n and m integers is 
simply related to the associated Laguerre polynomial 
U( - n ,  m+ 1, x) = ( - 1 ) 'n!L~'~(x) .  Then )co must 

be larger than the largest zero of  LA/2_~_¢,~=~)(X) 
[15].  

A7 0 > X z e r o  

"~[(2A-2)J/2-1.85575(2A-2)-'J612. (19) 
This justifies our neglect of  1/X 2 terms in (12). 

A direct determination ofxo shows that 2_4-xo is 
positive and increases with increasing A. Thus it is 
not  quite correct to say that chlral symmetry break- 
mg occurs at the "critical" coupling o~ (2A) = tic. On 
the other hand 2 ,4-xo  does not grow as fast asA since 
(19) indicates that o¢(xo)/crc=2A/xo~l + as A-~oo. 

In the following we shall choose ~t = 0 for conve- 
nience. We also normalize our solution according to 
X(xo) =K to obtain 

U(1 -A/2 ,  1, x) (20) 
Z(x)  =ic exp[(xo - x ) ]  U(1 -A/2 ,  1, x0) " 

We may now return to finding the dilaton mass as 
given by eq. (4).  Neglecting terms down by 1/A and 
hneanzing as before we find 

2 m~f~ ~ [And(r)K2/lr 2 ] 

× i d x ~  i dyexp(y -xo )X(y ) .  (21) 
rO XO 

Using the identity U'(a, b> z) = - a U ( a +  1> b+  1, z)> 
the first integral may be done giving 

m2 S~ ~ [ 2nd( r )~4 hr 2] 

i exp(xo - x )  U(1 -AI2,  1, x) 
× dx x 2U(1-A/2,  1,xo) 2 

AO 

× [ U ( - A / 2 , 0 ,  x ) - U ( - A / 2 , 0 , x o ) ] .  (22) 

This mtegral is not very sensmve to the behavior o f  
the mtegrand near Xo (where our approximations are 
suspect), since the integrand peaks at a point 2 such 
that 2-Xo  grows with A. 

Numerically it is found that the integral in (22) 
approaches ½ as A grows large, as shown in fig. 1. 
(And as expected this is also true for nonzero/22 << A. ) 
We know of  no a priori reason to explain this sur- 
prising tendency for the integral to approach a con- 
stant. But it lmphes that 

mZ f~ ~nd(r)tc4/zr 2, for largeA. (23) 
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Fig 1 The A dependence of the quantity 
A = - 3C2(r)/nb and b is defined by kOkot(k) = - b a ( k )  2 

2 2 mof  o where 

Whether or not the integral does in fact tend exactly 
to ½ as A ~ ,  it is clear that m~f2~ does not have the 
1/A dependence naively expected. Instead, at least 

m o f o  has surprisingly little dependence for largeA, 2 2 

on A. 

The dilaton decay constant  fo, like the pion decay 
constant  [4,5],  is also expected to be relatively in- 
sensitive to A and to be of order x. Thus the dilaton 
mass is tied quite closely to the dynamical  fermion 
mass, with the latter being of order x ~ Z ( 0 ) .  The 
case [6] C 2 ( r ) > > N  and C 2 ( r ) n < < N 3 / d ( r )  imphes 
both a large A and a conf inement  scale much smaller 
than x. This shows that the dflaton mass we have cal- 
culated is independent  of conf inement  physics. 

In actual practice, for a technicolor theory, if A is 
too large then new "sideways" physics will start to 
influence the high energy behavior of Z(k) .  This new 
physics may act as a physical ultraviolet cutoff, as 
considered in ref. [ 8 ]. But we may now conclude that 
there is never a light dilaton, no matter  what the very 
high energy behavior  of the theory is like. 

We have found that even though the apparent  
measure of  explicit scale breaking, f l (o~(k) ) ,  is small 
for any k relevant for the spontaneous chiral (and  
scale) symmetry breaking, the pseudo-Goldstone 
boson associated with this apparent  approximate 
scale symmetry does not have a small mass relative 
to the dynamical fermlon mass. The resolution to this 
paradox lies in the fact that effecUve action is a func- 

t ional of the order parameter  Z (k ) .  At the preferred 
point  in funct ion space the funct ion k S ( k )  does not 
decrease unti l  high momentum,  with the result that 
the effective action always samples a ( k )  over a suf- 
ficiently large range of k such that the variat ion of 
c~(k) is always sigmficant. It is never a good ap- 
proximat ion to set o~(k) equal to a constant  m the 
effective action governing chlral symmetry breaking 
for an asymptotically free theory with no ultraviolet 
cutoff, 
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